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Water vapor millimeter wave foreign continuum:
A Lanczos calculation in the coordinate representation
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The water vapor foreign-continuum absorption has been calculated theoretically from first principles
for the millimeter wave spectral region as a function of frequeh@nd temperaturdl. The
calculations are made using the Lanczos algorithm by writing the resolvent opesataf)( * as
continued fractions. In order to guarantee the quick convergence of the continued fractions, the line
space of HO is divided into two subspaces: one consists of the positive resonance lines and the
other the negative ones. By ignoring the coupling between them,£) " is expressed as a sum

of two continued fractions. The parameters appearing in each of the fractions are functions of the
matrix elements of powers of the Liouville operat®rbetween the starting vectors spanning the
corresponding subspaces. In the present work, we have taken into account all powers tf 5.

With the coordinate representation in which the orientations of tfi@-H\, collision pair are chosen

as the basis functions in Hilbert space, the anisotropic interaction potential is diagonal, and
calculations of the matrix elements are transformed to multidimensional integrations. The latter are
evaluated with the Monte Carlo method. In order to reduce the lengthy calculations, we assume that
the anisotropic potential has rotational symmetry aboutzZtexis of H,0O, and consists of the
long-range dipole—quadrupole part and a short-range repulsive site—site model. Once the parameters
of the continued fractions are known, one can calculate the poles and residues and then carry out the
ensemble average over the translational motion. Within the quasistatic approximation, one can treat
the latter classically and obtain contributions to the absorption coefficient at the poles. Finally, the
absorption coefficient at frequentgan be derived by an interpolation method. The results are fitted

to a simple function of andT, and are compared with experimental data and with two different
versions of Liebe’s empirical model. In general, the theoretical results are in good agreement with
the experiment. Meanwhile, the magnitudes of the theoretical absorption are between those of the
1989 and 1993 versions, but the temperature dependence is closer to the latter c2@02 ©
American Institute of Physics[DOI: 10.1063/1.1516792

I. INTRODUCTION ter wave region is questionable. The main reason for this is
not the far-wing line shape theory itself, but the band average
A good knowledge of the water vapor millimeter wave approximatiorf, a usual procedure introduced to simplify
foreign-continuum absorption is important for atmosphericcalculations. There are some alternative theoretical methods
applications, especially in dry air environments. At presentayailable to calculate the millimeter wave continuum. One is
our understanding of the problem is not satisfactory. Laboraso-called “third-order linear absorption” which has been ap-
tory measurements of the foreign continuum made by differplied for calculating the self-continuufmBut this method is
ent groups differ by large amounts and various empiricahot applicable for the foreign continuum, at least for that
models proposed differ significantly from each othdtean-  caused by the O—N, collision pairs, because it is limited
Wh”e, there is a lack of theoretical work heretofore from to cases in which two interacting molecules undergo transi-
Wh|Ch one iS able to prediCt the mi”imeter wave foreign tions by Sharing one photon energy Cooperative|y_ The sec-
continuum quantitatively well. Collision-induced absorption gnd is the Lanczos algorithm, which was used successfully
(CIA) has been proposed to be partly responsible for thigo calculate the millimeter wave self-continunwith the
continuum? but there is no unambiguous laboratory evi- | anczos algorithm, we showed that one can write the spec-
dence or theoretical calculations to support this assertion. Oy density as a continued fraction, and using the lowest-
the other hand, although the recent far-wing line shapgyger truncation, we can calculate the absorption. However,
theory works well in calculating continuum absorptions for 5, attempt to apply it for calculating the dominant contribu-
the infrared spectral regichits applicability in the millime- tion to the foreign continuum in the atmosphere caused by
the H,O—N, collision pairs has not been carried out. Because
3Electronic mail: gma@giss.nasa.gov the molecules are not identical, there is no contribution to the
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absorption from the lowest-order truncation of the continuedand this yields contributions to the absorption coefficients at
fractions. As shown in the next section, there are major probthe poles. An interpolation scheme is discussed, which en-
lems encountered when one considers higher-order truncables us to calculate the absorption coefficient at any fre-
tions. quency of interest. In Sec. Il H, we discuss the model for the
A breakthrough for this problem arose from our far-wing interaction potential used. The anisotropic part of this poten-
line shape research. In the past few years, we have developédl is assumed to have rotational symmetry aboutZlaxis
a first-principles far-wing line shape formalism and applied itof H,O, and consists of the long-range dipole—quadrupole
to H,O continuum absorption in the infrared spectral region.part and a short-range repulsive site—site model. The isotro-
In order to overcome convergence problems, we introducegic part of the interaction potential necessary to carry out the
the coordinate representation in which the eigenfunctions ognsemble average over the translational coordinagemod-
the orientations of the two interacting molecules are chosegled by a Lennard-Jones, and numerical parameters are
as the complete set of basis functions in Hilbert sgace. given. In Sec. Ill, we present the numerical results for the
With this representation, the interaction potential is diagonalabsorption coefficient(f), in units of dB/km, as a function
summations over states become multidimensional integraef frequencyf in GHz for several temperatures. We derive a
tions over the continuous angular variables, and as mangimple fitting formula for the theoretical results and discuss
states as desired can be included in the calculations. TH&e comparisons with experimental data and with the widely
convergence criterion is transformed to the feasibility of cal-used MPM8§ and MPM93° empirical models, two versions
culating these integrations, and the latter can be successfulf the millimeter wave propagation model developed by
evaluated using the Monte Carlo methbélithough the suc-  Liebe.
cess of our far-wing line shape formalism in predicting the ~ In Sec. lll, we first discuss the meaning of the results for
infrared continua does not help us directly to solve the milthe millimeter wave absorption obtained from the Lanczos
limeter problem, it turns out that the coordinate representamethod. The possible importance of ClA s discussed briefly,
tion and the Monte Carlo method are two powerful tools thatout we show that one is able to explain this continuum well
enable us to apply the Lanczos algorithm successfully forvithout relying on appreciable CIA. We compare the Lanc-
calculating the millimeter wave foreign continuum. zos method with the far-wing line shape theory, and although
The paper is organized in the following way. In Sec. I1, they arise from the same physical mechanism, they use dif-
we discuss the general formalism for the calculation of thderent methods to account for contributions to the absorption
absorption coefficient. In Sec. Il A, we briefly review the and are subjected to different limitations. The latter works
relation of the absorption coefficient to the spectral densityWell to predict absorptions in the infrared spectral region, but
and express the latter in terms of traces over the internal arffie former is more applicable in the millimeter wave region.
translational degrees of freedom for a pair of interacting molWe conclude by discussing some possible improvements and
ecules. In Sec. 11 B, we describe the Lanczos algorithm foxtensions of the present results, including a more general
writing the trace of the internal degrees in terms of a contindNteraction potential without the assumption of cyclic coor-
ued fraction. Explicit expressions for the parameters in th&linates, and the inclusion of higher-order terms in the con-
fraction up to third order are given in terms of the matrix tinued fra_ctl_ons_. While these refinements are possible, we
elements of powers of the Liouville operatat” up to n feel thgt it is first necessary to test hpw We_II the present
=5, between the starting vector. In Sec. |1 C, we discuss th&1eoretical formula works in atmospheric applications.

necessity to divide the whole line space into two subspaces

involving the positive and negative resonance lines, respedt. THE GENERAL FORMALISM

tively, and to express t_he trace_ of the int(_arnal degre_es as & The absorption coefficient and spectral density

sum of two corresponding continued fractions. Ignoring the

Liouville operator for the interaction potentiaf,;, we ob- As is well known, the absorption of radiation at fre-
tain explicit results for the parameters in the fractions andluéncy (cm™) per unit volume of a gaseous sample in
find that there is no millimeter wave continuum. In Sec. 11 D, thermal equilibrium at temperatuieis characterized by the
we consider the matrix element @f, in the subspace con- absorption coefficient(cw):

structed by the positive resonance lines. By introducing the A2

coordinate representation, we can write this as a nine- a(w)= %w(e’gﬁ‘”—l)F(w)- (1)
dimensional integral over the angular degrees of freedom of

the pair before and after the transition. However, from sym-The spectral densitf(w) is the Fourier transform of the
metry, this matrix element is zero; thus, to get finite contri-correlation functiorC(t) of the dipole moment operator; that
butions one has to consider higher powers &f=~L, is,

+ L4). The latter is the most time-consuming computation in 1 o
the present study and the details of how these are calculated F(w)= —Ref
or approximated are given in Sec. IlE. Then, using these m
results one can easily obtain the two continued fractionsand
From these the poles and residues can be determined, and the - i
procedure is discussed in Sec. I F. In Sec. I| G, the trace over CO=Tr(p'e” Mppue'™), )
the translational degrees is treated classically as an ensembidere u is the dipole moment operator of the sample and
average over the separationbetween the two molecules, is the density matrix. Therk (w) can be given by

. e'“'C(t)dt, (2
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1 1 1 1
Flw)=-—Im Tr( me) : Flw)=-—Im TrripisoTrab( MTVpapbwTL Papbﬂ) } :
8

In the above expression, the trace operatqg, 18 over the
1 1 internal degrees and the trace operatgrigrover the trans-
F(w)=——Im Tr( "T‘/;Fg \/E/u> (4) lational degrees. It turns out that to carry oufglis much
more difficult than Tr. Therefore, we focus our attention
on Try, first and apply the Lanczos algorithm to solve the

or alternatively by*

which is preferable to pursue our further study. In these ex

pressions, the Liouville operatdl associated with the total problem.
HamiltonianH is defined as B. Lanczos algorithm
LA=HA—AH (5 It is well known that the Lanczos algorithm is a useful
' technique in molecular dynamics. We do not describe this
whereA is an arbitrary operator in Hilbert space. method in detail here; rather the reader is referred to the

In the present study, we only consider low-pressure casg€Vview by Moro and Freed, and references thet&im. line
in which both the water vapor density and the nitrogen buffelspace, the Liouville operatof and therefore the resolvent
density are low. Based on the binary collision approximationOperator ¢»— £) ~* are matrix operators; ordinafin Hilbert
one can further focus on a single,®-N, pair and neglect Spacg operatorgfor instance,yp,ppp) are vectors. One be-
its correlation with others. As a result, the absorption coeffi-gins by defining a starting vectén line spacg,

cient a(w) of the whole gas sample can be expressed as |1>:|U>/\/W 9
47? where|v)=|/ ), and from this, one generates a com-
= —_— . Bﬁw_ papb” 1 ’ g
a(w) 3hc Mpair2(@ DF (@), © plete set of basis vector$l(),|2),...,/n),....) according to
wheren,; is the number density of pairs and it is propor- Bal2)=(1-Py)L]1),
tional to the product of the pressures of®land N; F(w) B3l3)=(1-P,)L|2),
is the spectral density of the pair whose expressions are the (10)

same as Eqg2) and(4), except all the quantities belong to

the pair only. For simplicity, we do not introduce new sym-

bols for the two-molecule system. For later convenience, the Bolm=(1=Py-1)LIn—1).

Liouville operatorL can be expressed as the sum of its com-In these expression®,, are the projection operators,

ponents: N

L= Lo+ Lo+ Ly, W Pn=2% [i)il. (1D

corresponding to the unperturbed® molecule, the unper- and the quantitie, are determined from the normalization

turbed N, and the anisotropic interaction betweesHand  requirement (n|n)=1); these are given by

N,. We note that because the isotropic interactigg(r) _

commutes with all other operators, one can exclveg(r) Bn=(nl£In—1), for n>1. (12

from L£,. Based on the same reason, one can mové&he matrix representation of in line space given in the

pisd =€Xp(—BViso(r))] introduced later anywhere in the complete basig(|1), |2),..) has the symmetric tridiagonal

trace. form whose off-diagonal elements ag, (n=1,2,...) and
In the present study, the frequencies of interest are only whose diagonal elements,, (n=1,2,...), are given by

few cm %, which are much smaller than the strong resonance

i . : o ap=(n|L|n). (13

ine frequencies. As shown later, during collision processes,

the anisotropic interaction can cause millimeter wave conThen, one can write the inner trace Bfw) in terms of a

tinuum absorptions when @ and N have separations be- continued fractiorf,

tween 3.4 and 5 A. It is well known that at this range, the

whole interaction is rather weak and the anisotropic part isry_

even weaker. Therefore, one can conclude that for cases of

1
#papy 7 \/Papbﬂ)

interest here not onlyWso(r)<H,, but alsoV,(r)<H,.

We note that, based on the latter, we can draw another con- = < v U> =(v|v) >

clusion that£,< £, , which will be used in our later discus- =L O— ra— B2

sions. Then, we can introduce the approximatipn ! 3

= pa.PbPiso IN EQ. (4) and, in addition, we can exclude the “’_0‘2_#3_...

component £, from L because H, commutes with
o (14

VpapPpPisot- By dividing all degrees of freedom of the two

interacting molecules into internal and translational degreedt is worth mentioning that all quantitie®|v), «,, and g,

we rewrite the expression féf(w) as appearing in the continued fraction expression are matrix el-
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ements. However, except fdo|v), their values can vary. resonance lines an@)_ with the negative resonance ones.
Becausel; depends on the separationbetween the two The physical meaning of this division is to separate an aver-
molecules,a,, and 3,, depend orr also. As shown later, the age over the whole band of,B into two averages: one over
translational motion of two molecules can be treated classithe positive resonance lines and the other over the negative
cally; thus, one can consideras a parameter here. resonance ones.

The continued fraction expression fB{w) is the start- Based on this, we introduce two independent starting
ing formula to carry out numerical calculations. In practice,vectors:|1), and|1)_ . Becausel,, the dominant compo-
one has to introduce a cutoff in E¢L4) to limit fractions  nent of £, does not mix|1), and|1)_ and, in general,
included and to make sure results obtained accordingly arenergy gaps between two components belongirid o and
converged. A simple convergence criterion is the requiremenitl) _, respectively, are larger than those withib), or
within |1) _, we expect that the coupling between them can
be ignored in the calculations. Then, the inner trace @b)

The expressions fow,, and Bﬁ appearing explicitly in Eq. can be expressed as a sum over two terms:
(14) can be given in terms of matrix elements ©fand its

powers between the starting vectay, 1

Tran| #'Vpapt——7 VPapoht

Bi<an_ia,, for n>1. (15)

a;=(1|£|1),
B3=(1|£?|1)~ af, _ 1 1
1 _+<U|w_ﬁlv>++—<vlw_£|v>—' (17)
2752 Teag a1 , ,
=7 ((1|£%1) ~ 2, (1| L7 1) + a3) (16)
B2 By following the same procedure as described above, we can
1 rewrite each term as a continued fraction as in Edgj).
B5=—5 (1| L)1) — 2a1(1| L3 1) + a(1| £2|1)) Accordingly, there are two independent setsxgfand 2 to
B2 be evaluated. For simplicity, we do not introduce new sym-
—a2-p2, bols for quantities associated with), and|v)_. In addi-

tion, due to their similarity, it is unnecessary to repeat dis-
cussions for each case. We will only present formulas
applicable forlv), and simply mention differences between
lv), and|v)_ .

The expression of the line space vedtoy, is given by

1
as=27 a3 2(1| £3|1) + 21 (1| L 1) + (g + 2ax5) B
3

. 5 4
+ Eg[(lw |1)—2(a1+ ay)(1|£%1)

0.=3 3 3 (Jgge AEi e

+ al(a1+ 4a2)<1|£3|1>—2a§a2<1|£:2|1>] y j™m j’r'm’ In
etc. As shown by Eq(16), when the lowest-order cutoff is X(Jrmlpj” 7' m")/VQaQp} [JTmin)(Inj "7 m’,
chosen, the continued fraction becomes simpby—(a;) ~* (18

and there is only one matrix elemeat£|1) required. For the

next cutoff, one needs to calculate, B3, and a,. This  where|jmin) is a simple notation fofj rm)®|In), g, and
implies that one needs to knoyi|£?1) and(1|£%1) as g, are the nuclear spin degeneracy factors foBHand N,
well. If one goes one step furtheﬁé and ag are needed and Q. and Q, are the partition functions of 4O and N, re-

two additional matrix element§l|£*|1) and (1|£°[1) are  spectively, and the summation ovigrand 7 is limited to a
required. Becausg, is the dominant part of, we can cal-  range withE(j’,7')<E(j, 7). We note that we have ignored
culate the matrix elementd|£3|1) with n=1,2,..., firstand  contributions from vibrational bands of B because they
treat contributions fromC, as corrections. We note that the are not only weaker than the pure-rotational band, but also
former are independent of the parameterhile the latter are  are farther away from the millimeter spectral region. We in-
functions ofr. troduce a normalization constakt, , defined by

C. Two starting vectors and the matrix elements of Lo . e
| o . My=2 > (2j+1)g.e "7 00 [%Q,,
As a guide to go further, it is wise to do a simple test I

first. By neglecting contributions fronf,, we can easily (19
evaluatea;, B3, a,, B3, andas which are just five num-

bers. However, it turns out that the magnitudesaf «a-,, where the summation ovgr and 7’ indicated by a symbol
and a3 are so small that they cause a failure of the conver{j’'+'}, is limited to a range withE(j’,7')<E(j,7). In the
gence criterion, Eq.15). It is the cancellation between posi- above expressiony, ,.j-,», Which are associated with the re-
tive resonance lines of 0 and negative resonance ones thatduced dipole matrix elements, but exclude the magnifude
reduces their magnitudes significantly. Therefore, in order t@f the dipole operator of 5D, are given in the body-fixed
guarantee the convergence, one can divide (i.e., frame of HO in which the dipole moment lies along &
[Vpappm)) into two parts:|v), associated with the positive axis (i.e., thell" representationby
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Wi =(2] + DI (2] +1)% UL, Ul C(j"1j,kok),
(20

where C(j’1j,k0k) is a Clebsch—Gordan coefficierlﬂ{w
results from expressing rm), the wave functions of D,
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is not correct because there are a few relatively weak lines
there. But, given the fact that most lines of the pure rota-
tional band are located beyond the millimeter spectral region
and that results from the Lanczos algorithm represent aver-
aged effects mainly over these lines, our finding is consis-
tent. This also indicates that it is the anisotropic interaction

in terms of an expansion of symmetric-top wave functionsthat plays a crucial role in causing the millimeter wave ab-

|jkm), viz.,

[j7m)=2, Ul Jjkm). (21
It is obvious that, (v|v) .= u?M, . It is easy to derive ex-
pressions for, (1| £3|1), which are given by

1 , o
(UL =X X (21 +1)g.e A0

+ 7T {jr77}+
X |tz {EG, T —E( 7)1 Qa.

We note that the expressions fo¢1|£}|1), are completely
independent of Bl

We include all HO states up td,5,=26 in our numeri-
cal calculations. We calculatél . from Eg. (19) and the
matrix elements, (1|£3|1), from Eq. (22) for T=296 K.

(22

sorption.

By comparing the values of the poles given above, it is
obvious that those associated wift) , and those witf1) _
are not symmetrically located about the origin of thexis.
As shown by Fig. 5 presented later, the same finding remains
true when contributions frond; are included. This asymme-
try results from the procedure used here to introdlace.
and [v) _ with which the original vectofv) is not evenly
divided between them. It is worth mentioning that one can
start from the symmetric correlation functio@(t)=C(t
+iBh12), which has the symmetry @(t) =C(—t) and fol-
lows the same procedures presented here, including introduc-
ing a new vectofv) and its two evenly divided components
lv), and|v)_ . We expect that the poles associated with the
new starting vector$l), and|1)_ will be symmetrically
distributed along the axis.

The former’s value is 0.374900 and the latter’'s values are

95.1928 cm?!, 12680.7 cm? 2.1652K1CFcm 3,
4.46850 10°cm 4, and 1.07108 10 cm ° for n=1, 2,
3, 4, and 5, respectively. Accordingly, we obtaim,;
=95.1928cm?', B5=3619.05cm?, a,=169.562cm?,

D. Matrix element . (1|£,|1)+

Up to this stage, we have not faced serious obstacles but
we have not achieved substantial progress either. In contrast,
the next step, i.e., to calculate matrix elements involviiRg

B§=8944.98 cm?, andaz=226.850 cm!. Based on these becomes a big challenge. From the following analyses, one
values, it is easy to check that the convergence criterion isan understand why. First of all, let us consider the calcula-

satisfied because B3/(a,a,)=0.224 and B3/ (ayas)
=0.233.

We also calculate quantities associated with the starting

vector [1) _ from formulas similar to Eqs(18), (19), and

tion of ,(1|£4|1),, which can be explicitly expressed in
terms of Hilbert operators as

(1 L4]1) 4

(22), respectively, except the summations are carried out 1

with E(j’,7")>E(j,7). The value of M_ obtained is
0.625 100 and the values of the matrix elemen($|£)|1) -
with n=1, 2, 3, 4, and 5 are-116.535 cm?', 18878.2
cm 2, —3.8710%10° cm 3, 9.48421x10° cm 4, and

—2.68376< 10 cm™®, respectively. The corresponding val-

ues ofa, and B2 are a;=—116.535 cm?!, B5=5297.76
cm 2, a,=—198.902 cm?, B5=12250.93 cm?, anda;

= (il 7'm)
.

X <] "7'm’In |prani\/gM_Pb \/gl"vani“ Tm|n>v
(23

where repeated indicgs, m, j’, 7, m’, I, andn mean a
summation over them, and there is a range limitation with

— —276.662 cm®. Finally, the convergence check yields E(I",7')<E(j,7) here. As shown by Eq23), many matrix

B3l (ara;)=0.229 andB3/(a,az)=0.223, respectively.
Based on these values, explicit expressionsHw) in

elements ofV,, between states of a @—N, pair are re-
quired, and the number is very large if most of the populated

terms of the two continued fractions are known. Then. onstates are taken into account. Of course, to evaluate these

can easily find the poles of the fractions on theaxis. For
the lowest-order cut-off, there are two poles=95.1928

cm ! and w=—116.535 cm?, one from each of the contin-

matrix elements is possible, but it requires a lot of work
unlessV,, has a very simple form. Usually one has to ex-
press V., in terms of an expansion of the product of

ued fractions, respectively. For the next order, there are fouID'm”,,k,,(a,B,y) andY.»(0,¢) first, where the angular argu-

poles: w=61.6543 cm?, 203.100 cm! and w=—74.0896
cm 1, —241.348 cm* associated with1), and|1)_, re-

ments represent orientations oh,® and N, respectively.
Then, one has to calculate matrix elements for each compo-

spectively. Then, for the next higher order shown explicitlynent and add the results obtained. In general, there are a lot
in Eq. (14), there are six polesw=46.1918, 141.861, and of components in the expansion because the number of pos-

303.552 cm? and w=—55.9511,—173.407, and-362.742
—1
cm

sible combination of”, m”, k”, 1", andn” is large. Unfor-

, respectively. Because there is no pole within the mil-tunately, the evaluation of(1|£4|1), does not help us too

limeter spectral region, it seems that without considering thenuch. As shown later, one has to go further to calculate
interaction between 0 and N, there are no local line matrix elements of operators that contain powerg£ pf This

2

absorptions in this region at all. Clearly, the above statemerimplies that quantities lik&/;; appear in the calculations. If
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one follows the usual procedure mentioned above, the calcuhe coordinate representatiafp,py, is off-diagonal but the

lation is intractable. This is one reason why, even for such adipole momentu is diagonal. However, because the positive

important problem, there has been little progress. resonance componenjg, and the negative onea_ are
Recently, we have made progress in solving the problendistinguished here, one has to treat and u_ as off-

of convergence in far-wing line shape calculations. We ex-diagonal operators.

plain the problem and our solution briefly here. In order to  Because the pair has a rotational symmetry, the dimen-

calculate converged results, one has to include most of thsionality of Eq.(26) can always be reduced by one. There-

populated states in calculations. However, as more states afere, ,(1|£4|1), is a nine-dimensional integration whose

included, the size of the interaction potential matrix, which isintegrand consists of two factor§¢Z|vVpaposes|7)|? and

an off-diagonal operator, increases very fast and rapidly extV ,(£) —Van(7)]. The first factor is constructed from the

ceeds the computer limitation to handle a diagonalizatiordensity matrices for KD and N:

procedure. As a result, to obtain converged results was dif- 5

ficult, in practice. The breakthrough arose from the idea thatl{|Vpapore+|7)]

m;tead of choosing the internal stgtes as the basis sgt in =|<5(Qa—9ag)|@M+|5(Qa—ﬂan)>|2

Hilbert space, one can select the orientations of the pair of

molecules as the basis SeBy introducing this coordinate ><|<5(nb—nb§)|@| 5(Qb—.(2b,,)>|2. (27

representation, interactions are o_Ilagon_aI. As_a resul_t, SUMMA o inear molecule N we have shown théf

tions over states become multidimensional integrations over

the continuou; angular. variables anq as many states as dés(2,— Q)| Vol 5(Qy— Q)2

sired can be included in the calculations. The convergence

F:ntenon_ is transformed to the f§a5|bll|ty of (_:alculatmg these :2 BLPL(C0SOp 1)), (29)

integrations. As demonstrated in our stddysing the Monte C

Carlo method one is able to calculate up to 11—dimensi0nadvhere P,(c0sOy,,)) are Legendre polynomials with
integrations required for the most complicated pair consist- - b(7)

ing of two asymmetric top molecules. The calculations of the . 0.1.2,.... andyy is the angle betweefl,; and 2,
an and,Bﬁ in the Lanczos algorithm are perfect candidates to
apply our new method. In fact, the main computational task£0s0 ;)= c0s6,; 0SBy, + Sin Oy, SiN Oy, CO P~ Ppyy) -
here are to evaluate matrix elements. With the coordinate

representation, the job is transformed to multidimensionairye coefficients, are given by

integrations, and with the Monte Carlo method, the latter can
be successfully carried out. In addition, no matter how com-
plicatedV,, is and no matter how many powers \&f,,; ap-
pear, to calculate matrix elements is simple because in the )
coordinate representation, the integrands are just ordinary X \gg;.e” AEEWHEIDIZC2(11 71,000 (30
functions. It is these two powerful tools that enable us Ot is obvious that the density matrix for
make progress.

We adopt the simplifying notation tha®, is used to
represent the orientation of the molecule of interest. For N
), corresponds t@, and ¢,; for H,O, it corresponds to
a;, B;, andy,. Then, we can express the basis functin
representing a specified orientation of the pair labeled &y

1
BL=M% (21+1)(21"+1)

Nis a one-
dimensional distribution whose argument is the angle be-
tween the initial and final orientations of,NThe profile of
the absolute square of the density matrix for &dlculated
from Egs.(28) and (30) has been discussed in our previous
study and will not be repeated here. On the other hand,
because KO is an asymmetric top molecule, one expects
10)=18(Qa— Qo) 5(Qp— Q). (24)  that [(8(Qa— Qo) |Vpam+|8(Qa—Qa,))|? is a three-
dimensional distribution whose arguments are three Euler
We note that these basis functions are eigenfunctioN§,@f  angles representing rotations between the initial and final
. —\ orientations of HO.

Vanl T, Qa, Qo) |£)=Van(T, Qag 25| 2), @9 As shown in our previous studyjf one uses a high
where V,n(r,Q,,,Qy,) are the eigenvalues and they are cutoff such asl,=26, to calculate this distribution requires
simply values ofV,,; at positions of the pair specified by  a lot of CPU time, but is still feasible. However, if the inter-
Q,,, andQy,, . For simplicity, Vo (r,Q,,, ;) will be de-  action potential model used for the calculations in E2f)
noted asV,.({). In terms of this basis set, one is able to contains cyclic coordinates, the three-dimensional distribu-

rewrite . (1|£4]1), as tions are reduced to an “averaged” one-dimensional distri-
1 bution that can be obtained more easily and, in addition, the
+<1|£1|1>+:M_f J' 1| mﬂ+|77>|2 nlne—d|m_enS|o_naI integrations in E{26) are reduced to
+ seven-dimensional onésAs a result, one is able to reduce
the difficulty of calculating matrix elements dramatically.
X[Van( O) = Van( 7)1dQ,dQ,,  (26) Y g y

Given the fact that there are several other matrix elements
whered(), denotes the volume element and the subseript required, to limit CPU time we will assume that the potential
of p, implies that its components lie in a subspace conimodel for V. (r,Q,,€) contains cyclic coordinates. This
structed by the positive resonance lines only. We note that iassumption can be justified by the following argument. First
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of all, the leading long-range dipole—quadrupole interaction, (1|£,|1), is zero. Combining this fact with those derived
of H,O-N, has rotational symmetry about tdeaxis of O  in the last section, we can conclude that in order to calculate
because in thél " representation, the dipole moment is alongthe millimeter wave continuum absorption fop®—N,, one

this direction. This term dominates other higher-order termsnust consider a higher-order cutoff for the continued fraction
since the HO molecule has a large dipole moment. There-pecause there are no contributions from the simplest approxi-
fore, the long-range part of ,,(r,€Q;,,€y) is approximately  mation (@ —a;) .

independent of the Euler angleof H,O. Second, as shown

later, it is the long-range part not the short-range part o . n

Vani(r,Q,,€Q) that plays a crucial role in the millimeter fE Matrix elements of - £

wave continuum absorption. Therefore, one can conclude As mentioned before, one big advantage resulting from
that this assumption aboM,,(r,Q,,€Q,) is a good approxi- the coordinate representation is that derivations of expres-
mation in the present calculations. One can thus perform aions for matrix elements involving powers @ff with n
two-dimensional integration ovey,, and y,,, first. In fact, ~>1 do not cause much more difficulty than fof1|£,[1) . .

the procedure involves the density matrik 5(Q,  First of all, let us consider the matrix element1|£?|1),
—Qa§)|\/au+|5(ﬂa—ﬂan)>|2 only. It turns out that by us- which consists of four terms:

ing the fact that ALY s = (210 + (L] LaLa 1)

27T . .
fo D@, B,y)dy=2m 8D, B), (31 + (A LaLg| 1)+ (1] £3]2) (34

The first term is already known. In the following, unless
necessary for clarity, we will adopt a convention that re-
peated integration variables imply integrations over them and

27 (2w 5 we will omit the integration symbol. The second term can be
fO fo |<5(Qa_ Qa§)| \/I)—aﬂ+| o(0y— Qaq)>| d')’a{ d'ya'/; expressed as

where 8,9 is the Kronecker symbol, one is able to carry out
this integration analytically and obtain

(UL1Lal1).. =57 rl s Vpapol0H(E| Earlpapoes )
:2 ALPL(COSa(grl))v (32) + 14alt)+ M, M NPaPb aVPaPbM+|7]
whereL=0,1,2,...., andd ., is the angle between the ini- XVan( ) = Vanl(m)], (39

tial and final directions of th& axis of a body-fixed frame which is very similar to that for.(1|£,|1), , except there is
for H,O; this expression is similar to that for,Ngiven in Eq.  an extra Liouville operatoL, appearing in the density ma-
(28). The coefficientd\, introduced in the above expression trix of H,O. With the same procedure as before, we can

are defined by carry out integrations of (8(2,—Qy,)| s} Vpal(5(Qq
1 o _Qag)><5(ﬂa_ﬂag)|£a\/gﬂ+|5(Qa_ﬂan)> Oover Yya;
A= —(—DILY > > D (—1)lith and v,,, first and introduce the corresponding “averaged”
167°Q, I d272 fjraly, (igmhh s density matrix of HO. It turns out that the latter is another
. . i : one-dimensional distribution whose argument g, -
X (2)1+1)(2j,+ 1)V(2j1+1)(2j5+1) Hence, we do not need to go further and can simply conclude
% @e—ﬁ[ﬂilynﬂE<J’zyfz>]/2 that ,(1|£,£,)1),=0. Similarly, we can conclude that

(1| £,L4]1), =0 also. Therefore, there is only one new
nonzero term,(1|£3|1), in ,(1|£?1),. One can easily
write down the expression far(1|£3|1) . without any more
o algebraic work. In fact, the expression fof1|£2|1) , is the
X [ ; (—1)“UL171U{(272C(]1j2L,k—k0)} same as that for(1|£4]1) . given by Eq.(26), except for a
replacement of Van(&) = Van( 7)1 bY [Van(£) = Van( 7])]2:

XW(igj2l 1l 0 AL) By oot Mot

’ I
le k7'2

k1 12 S 'Lt 1
x[% (T U U Clialal ik O)J’ 33 +<1|£§|1>+:M_+|<§| Papbﬂ+|77>|2[Vani(§)_vani(77)]2-
whereW(j,j,j1j1,1L) is a Racah coefficient, and;7;} . (36)
and{j,75}, indicate the summations ovgf, 7 andj;, 7,  The values of,(1|£2|1), can be evaluated in two steps.
are limited to E(j;,7)<E(j;,71) and E(j,,7) First, we calculate the density matrix of,t T=296 K and
<E(j,,7,), respectively. By comparing Eq&33) and(30), the “averaged” density matrix of kD at T=296 K from
it is obvious that the expression féy, associated with the Egs.(28) and (32), respectively. The results for the former,
“averaged” density matrix of HO is more complicated than which has been mentioned in Sec. II D, are presented in Fig.
B, for N,. Fortunately, there are not too maAy to evalu- 1 and the latter in Fig. 2 together with the corresponding
ate. In fact, if one choosek, =26, the number oA is 53.  results associated witfl)_. Using the Monte Carlo method,
However, before we carry out numerical calculations for thewe carry out the seven-dimensional integrations in which the
“averaged” density matrix of HO, we can first draw a con- integrand i V(£) — Van(7) 1% and the product of the two
clusion about,(1|£4|1), . Because the integrand in Eq. distributions is the weighting function. Becausg,; is a
(26) is antisymmetric with respect t9 and 7, the value of  function ofr, the value of the seven-dimensional integrations
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FIG. 1. The absolute square of the density matrix gfdgiven in the coor-  FIG. 2. The one-dimensional distributions of the density matrix gDkt
dinate representation calculatedTat 296 K for J,,,.,=80. T=296 K for J,,=26. The solid and dotted lines are associated Wijh
and|1)_, respectively.

depends omr too. In practice, we select 80 values rothat
span the interaction range and calculate the corresponding<l|£§£a+£a£§|1)+
{1|£3|1), for each specified. In order to make sure that
results obtained are r_eliable, we c_alculate a normalizafcion =M—{<77|M1 \/@| O] LaNpapotts| 1)
constant of the weighting function simultaneously by setting +
the integrand equal to 1. The constant should be close to — o\t
16m2A, _,. Otherwise, it indicates that the matrix elements (nl(Lavpapom) 1L papor | )}
are not reliable. This procedure is carried out for all integra- X[Vani &) = Vanl 7)12. (38
tions. In general, all the calculations take several hours of
CPU on a workstation. A detailed discussion about how toAnalogous to Eq.(36), +<1|£§£a+ £a£§|1>+ is a seven-
apply the Monte Carlo method to perform multidimensionaldimensional integration 4V 4,(£) — Van( 77) 12, with the first
integrations whose weighting functions have similar patterngactor in Eq.(38) serving as the weighting function. This is a
as those in the present study has been reported previbuslygroduct of two distributions: the first associated with
and we do not repeat it here. the same as before, and the one associated wit s to

Now let us consider the matrix element of1/£3/1),  be calculated. It is easy to show that the latter can be ex-
which contains eight terms. According to the powersCof pressed by formulas similar to those derived previously for
the latter are catalogued into four groups: (9l pal O Npams | 1Y (=1L pape+| 7)|?) shown by

3 3 Egs.(32) and(33). The only difference is that it comes from

S = (L) a new set of coefficientA, whose expression is almost the

(U L1 L2+ L2L0+ LaL1 Lol 1) 4 same as EQ33), except that an extra factdrE(jq,7y)
) , —E(j1,7)]1+[E(j2,m) —E(j5,73)] is inserted inside the
+ (LU L1La+ LoLi+ L1LL]1) 4 summation loops over the indices, 71, 1, 75, j2, T2, j 5,

+ (13 37) and 75,. The distributions associated with (1|£3£,
AT + L L2]1), and_(1|L£2L,+ L£,L2|1) _ are presented in Fig.
Among them, only the third group needs to be evaluate®. Finally, we note that the CPU time for calculating
because the first one(1|£3|1), is already known and, . (1|£2L.+L,L2|1), is the same as for(1|£2|1), .
similar to (1| £,L,+ L2£4|1) +, we can conclude that the Now, we focus our attention on{1|£,£,£4|1), whose
second and the fourth groups are zero. With respect to thexplicit expression requires more algebraic work because the
third, we have to calculate,(1|£3L,+£.L51), and two £, are separated by on&, here. One can write
(1] £1L£,L4|1), separately. The former can be expressed as (1|£1£,£4]1). as a summation of three terms:
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1
AL L1LoLe|1) =~ M—+{< 7l 1 papul | Lavpapores | 1)+ {1l (Lavpaports) 1O Paports | 7)1 Vanl O Vani 7)
1
+ M_+< 77|Pb/"4£r Hapats —pp \/EIL‘F Ha/‘i \/E| 77>Vani( 77)2

1
+ M—+< M poVpatts B Npa— pore pams | O HA 7 Vanl OVanl 1), (39

and all of them are multidimensional integrations. By com-#. As a result, we can conclude that the second term in Eq.
paring the first term with Eq(38), it is clear that its expres- (39) is given by
sion is almost the same as that fof1|£L,+ L.L3]1), ,
except that the integrand becomés,(¢)Van(7). By using  +— (7l poal Hapatts = povpares Hatt Npal m)Vanl(7)°
the same weighting function derived for (1|£3L, *
+/3§/:§|1)+ , one can carry out the seven-dimensional inte- :+<1|£a|1>+@m, (40)
grations ofV,,({)Van(7) and obtain values for this term. s
With respect to the second term of Bg9), it is given in where the notatioV3; is introduced to represent an average
terms of four-dimensional integrations df,(7)2 over Of Van(7)? over 5. Of course V3, is a function oft.
with an associated weighting function. As before, this  Similarly, the third term is given in terms of integrations
weighting function is a product of two factors: one associ-Of Van({)Van(7) over { and 5 with a different weighting
ated with N, and one with HO. The former is given by function, which is a product of two distributions. Using the
(8(Qp—Dy,) | py| 8(Q,—Qy,)) and is simply the constant Well-known formula
1/44r. With some algebraic work, one can show that the latter 1 =
is (v|Lav) /4, which is known. Then, the weighting 4—2 (2L+1)P (x)=8(x), (41
function becomes, (v|L,|v),/167% and is independent of TL=o
it is easy to show that the distribution associated with N
becomes a Dirac delta functioa(y,,—€y,) when the
number of states of Nincluded goes to infinity. This enables
102 - : : i : : : : i _ us to carry out part of the integration analytically and reduce
i ] the dimensionality of the remaining one by 2. On the other
hand, there is no difficulty to derive the distribution foy®
that is plotted in Fig. 4 together with its partner derived for
|1)_. As shown in the figure, the distributions oscillate
wildly and, in fact, the numbers of oscillations are equal to
Jmad2. Therefore, one must be careful in these calculations
because this kind of behavior could cause big errors when
one evaluates the integrations\8f,(£)Van( 7). In order to
make sure that the results obtained are reliable, we use an
alternative way to carry out the calculation. We introduce a
reasonable approximation fov,,H,Vani by ignoring the
higher-order commutator term,

VanHaVani= (VgniH atH anm)/Z‘l- [Vani.[Ha  Vanil]

10" |

107! 3

= (VgniHa+ HaV§m)/2. (42
Then, one is able to show that the approximate third term

is equal to, (1|£4|1), V2, Numerical tests show that dif-
ferences between these two results are less than 1%. Thus,
we can conclude that we can calculatel|£,£,£4|1) , ac-
curately. We note that by comparing the values
] of (1|£1£.L1|1), with those of (1| L3La+ L L3|1), , it
: : seems that the former is about half of the latter. This obser-
10_40 2IO 4ID GIO : BIO 1(I)O 1;0 1;0 1é0 180 vation will pe used later. . . .

We will not present detailed discussions for
FIG. 3. The one-dimensional distributions of®lobtained aT =296 K for  _ (1|£*|1), , which consists of 16 terms. Among them, we
Jmax=26, which are the weighting functions used to evaluate the matrixg|ready know the value Qf(1|£g|l>+ , and four other terms

elements, (1|£2L,+ £,£2]1) . and _(1|L£3L,+ L L2|1)_ and are repre- S :
sented by the solid and dotted curves, respectively. Because the values of t gntalnlng one L, operator are zero. With respect o

latter are negative at small angles, we use a thin line to plot its absolut&!X terms containing tWozﬁl2 opezraztors, V\ée group them
magnitude. into two groups: (1|LL1+LIL5+ L LTL,|1), and

10721

107
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300 T T T T T T T T ones by assuming that they equal the former. We will also
ignore the remaining higher-order correction terms in
280 - L ] +(1]£%1), . Therefore, all matrix elements required are
S T = 296 K available and there are no more calculations involving the

Sl IR 1 internal degrees of freedom.
ol L -
A F. Poles and residues of the fractions

100 .
After all the matrix elements of (1|£"|1), up ton

so Ll s | =5 are known, one can easily calculate, 85, a,, 83, and
L /\ /\ ) ) a3. We find thata, is a constant95.1928 cm?) because
ol iy /\ NGACACT A +(1]£]1) ;= (1| L4|1); and all the others are smooth func-
b1l \/\/ LV T tions of r and approach their asymptotic valugs., asr
—50 B N EA VAN i goes to infinity derived previously without considering the

interaction, but we do not present their plots here. In addi-
g tion, one can verify that the convergence criterion, B¢),

S EEREE is satisfied. Then, in terms of these functions, the inner trace
—1s0 | 1o . of F(w) can be expressed as

-100

—-200 | X - < 1 1 1> 1

¥ - - 2

. s\le=Lif, o B
250 | ° i w—aq g

' w—a,—
_300 1 1 1 1 1 1 1 1 w - a3
] 20 40 60 80 100 120 140 160 180 3
R.

FIG. 4. The one-dimensional distributions of® obtained af =296 K for = z ! . (43
Jmax=26, which are used to evaluate parts of the matrix elements i=1 0—Z

(1| L1LL4]1), and (1] L£,L.L4]1)_ , respectively. The formethe solid . .
line) is derived from the third term of Eq39). The latter(the dotted lingis 1 Ne last step in Eq(43) is based on a theorem about the

its partner. As shown in the figure, each of them oscillates 23,,/2)  poles and residues of the continued fractidif. @y, @, and

times. ag are real andeg and ﬁ% are positive, as is the case here,
the fraction can be expressed in terms of its poles and resi-
dues, and these polesare real and distinct and the residues

+<1|£a£1£a£1+£l£a£1£a+£1£§£1|1>+ . For the former, R; are positive. There is no difficul.ty in finding because
using the same method as that used in calculatinéhey are the roots of a cubic equation,
AL L2L,+ LL3]1) , , we are able to obtain the values. FOr (w— a;)(w— a,)(w— az)—(w—a1) B3~ (w—ay) B5=0,
the latter, as expected, problems similar to what happened in (44)
(1| L1LaL4|1) . occur, but the situation becomes even
worse. The most severe trouble results from the operat
L£1L2L,, where two L, are separated by2. The corre-
sponding weighting function oscillates so wildly that one is Ri={(z— az)(zi—ag)—ﬁi}(zj—zk)/
not able to obtain reliable integration values at all. In the
present study, we simply estimatél|£,£2£,]1), by using {222 25) + 2325~ 20) + 2521~ 2} (45
the observation found above. We assume that the values @fhere the indices, j, andk are in cyclic order. Finally, we
(1£1L£5L4|1), are equal to half of ,(1|£,L1L.L1  note that becausg?, a,, B2, andas are functions of, z; ,
+L1L,L1L,|1) . because the former contains one term andand R; are functions ofr too. In the present study, because
the latter contains two terms. Concerning the remaining fivave are interested in the millimeter wave spectral region, we
terms associated with,£3, ﬁfﬁa, L1LaL3, ﬁﬁaﬁl, and  will focus our attention on those poles that are within or
L1, the first two are zero, and we will ignore the othersclose to this frequency region. We present the calculated
because for case of interest hete< L, and, in comparison poles of interest as functions ofor T=270, 296, and 330 K
with those terms that have been taken into account, theda Fig. 5. For each temperature, there is a pair of curves
terms are higher-order corrections. associated withl), and|1)_; the positive slope curve be-
Similarly, there are 32 terms in{1|£°|1), . We already longs to the former and the negative one to the latter. As
know +<1|,/:g|1>+ and five zero terms containing one shown in the figure, all of them are smooth curves and ap-
L,. Again, we group ten terms containing tw@;  proach symptotic limits asgoes to infinity. For example, the
operators into two categories:(1|£3L5+ £2L3+ L2020,  two curves forT=296 K approach 46.1918 and55.9511
+ L L2L201) and L (1L.LiLaLi Lot L2L1LL,  cm L, respectively. However, the parts of curves of most
F LyLaLa Lo LoL2LI Lo+ LoLa L0+ L1L3L1]1), . We  interest are those whose values are within 0-15 tnin
calculate the first group. With respect to the second grouppractice, we have to extend this region by a few énsuch
we calculate the first three terms and estimate the remaininas —3—18 cm * because we need to evaluate some deriva-

and there are analytical expressions available. One the other
cﬁand, one can easily show thRt are given by
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50 . T T T T Because the millimeter wave spectral region is far away
g from the strong lines of the pure-rotational band gfCH we

T introduce the quasistatic approximation in which the colli-

sions are assumed to be of infinite duration and the transla-

T tion motions can be treated classically. Then, the ensemble

average of results obtained from the tracg,Tiver the trans-

1 lational motion becomes an integration ovefirom O to in-

finity with pjs, as its weighting function. From Eq$3) and

7 (46), we are able to write the spectral denditfw) as

30

20

3
F(o)=47u’M. 2, f Slw=2z"(r)Je FVisd"
i=1J0
=10 |
XRII(r)r2dr+47u?M_

3
XE 5[(1)_Zi(i)(r)]eiﬁviso(r)Ri(*)(r)rZdr’
i=1J0

POLES ON THE FREQUENCY AXIS (cm™")

(47)

—40 }
where we have used the the well-known formula

! =P
+ie—z

lim j;Z—i'n'é‘(a)—Z), (48)

_603 L L 1 L L E_>0+w

DISTANCE (1078 em) whereP indicates the Cauchy principal value of the integral.

We note that in order to include a statistical weight resulting
FIG. 5. The calculated poles of the continued fraction as functionsfaf f ;

rom Vg,(r), an extra factop,,(r), defined b
T=270, 296, and 330 K. They are represented by the solid, dot—dashed, and ani(") Pan(r) y

dotted lines, respectively. For a specified temperature, there are two set of 1

curves associated witfl), and|1)_, respectively. Each set consists of PaniT)= _f f e AVah . tlqO dQ, , (49)
three curves but only the one passing through the millimeter spectral region \%

is presented. As increases, the positive slope curve belongd}a and the . . ) . .
negative one t¢1)_ . whereV is the volume of integration, should be inserted in

Eqg. (47). However, in the present study, because values of
pan(r) are very close to 1, the effect from including this

tives. ForT=296 K, this region is located at separations be-factor is negligible. . o
tween 3.5 and 4.5 A. By comparing curves representing dif- [t May appear that there is an another step required in
ferent temperatures, we find that the separations of intere&d- (47) before one is able to evaluate valuesgi). Usu-
become smaller as the temperature increases. With respect3y, one needs 0 find roots for a specified frequeadyom
residues associated with the poles of interest, we find thdf' equationsz{ ()~ w=0 and z7(r) - w=0, with i
they are also smooth functions of and their values are =1, 2, and 3. In general, there is no problem to find these

positive and less than 1, but we do not present them here roots directly by solving the equations numerically after
Z")(r) andz7)(r), as functions of are known. However,

this step is unnecessary. In fact, every selectsch common
G. A classical ensemble average over the root for six frequenciesz{(r), z57(r), 257(r), 27(r),
translational motion z57)(r), andz$)(r). Therefore, instead of finding roots for
After all the poles and residues are known, we havé?‘(f]r); frequenc(;_/)of interest, one can simply screen two set of
completed the evaluation of the trace,Jand can express Z (r) andz “(r) and pick up those within the millimeter
the results as spectral region. For example, assume #at(r) is one of
1 them. With Eqs(6) and(47), we can calculate the value of

i =7+) i i -
Trop| pf /_Papb —papom F_(wo_) with wg=2} (ro) and obt_a!n the cor_respondlng con
w tribution to the absorption coefficient at this frequency,

3 (+) 3 (—)
Ri™(r) Ri~(r) 16473 R (ro)
—uML D — MY (46 _ o™ w22m . 1 o
m +i21 I I:El o— (46) a(wq) 3%c BhiNpaiwom M+|zi(+)(r0)|

w—2(r) 27 (r)’
X r(z)efﬁViso(ro)pam(ro), (50)

where the superscriptst) and(—) are attached to the poles
and residues to distinguish their associations, and their de-
pendencies om are explicitly indicated. Now, we are ready where the factor of exp(Bhwy)—1] has been approximated
to perform the remaining trace operatoy frEq. (8); i.e., an by Bhwy andz)(")(r)=dZ*)(r)/dr. As shown by Eq(50),
ensemble average over the translational motion of the molthe calculation oix(w) is straightforward because all quan-
ecules. tities appearing on the right are known.
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Numerical tests show that for the tripletg{™(r), 0.07 and 0.56 A, respectively. Values 8§ and p, are cho-
Z57(r), and z{7)(r)}, at most, there is only one of them sen asVy/k=1.0x10"K and p,=0.22 A. We note that the
located within the millimeter wave spectral region. The sameprofiles of the poles shown in Fig. 5 were obtained based on
conclusion is also true fofz!)(r), i=1, 2, and 3. This this anisotropic interaction model.
indicates that although the indéxuns from 1 to 3, there is On the other hand, the isotropic interaction is repre-
only one choice ok ")(r) andz{~)(r) of interest and they sented by a Lennard-Jones model,
are just those plotted in Fig. 5. Without loss of generality, we (U 12 (0_>6

r r

denote this choice a$=1. As shown in Fig. 5, these Viso(F)=4e€
Z")(r) andz{)(r) are smooth functions af and, in addi-
tion, they do not cross in the millimeter wave region. Thiswhere ¢ and o are the parameters. We note that
implies that the two ranges ofthat make contributions to  Vo(r,Q2,,8y) is the most crucial factor in the whole calcu-
a(w), one fromz(1+)(r) and one fromz(l‘)(r), do not over- lation process, whereag,(r) does not play any role until
lap. the last step in which the average over the translation motion
Based on discussions given above, one can pursue thie carried out. As a result, to adjust the model of
final calculations in the following way. With Eq50), we  Van(r,Q4,,€2y) and its parameters requires the bulk of CPU
calculate all ofa(z{")(ro)) with z{*)(ro) located between, time (about one day on one workstatjdpecause one has to
say, —3 to 18 cmt In practice, we obtain a few dozen start each time from the very beginning. Meanwhile, to ad-
values, the exact number of which depends on the resolutiojtist Vis,(r) is easy and one can get results in a few seconds.
of r used. Because all quantities appearing in &) are By comparing results obtained from different choices of the
smooth functions of, these values vary smoothly a§”)  Lennard-Jones parameters, we adopt the values-8f31 A
X(ro) varies. Then, for any frequenay of interest, one can ando/k=155K. Based on a combination of the correspond-
easily obtaina(w) using the interpolation method. Starting INg Viso(r) and theV,(r,Q2,,€2) mentioned previously,
from an equation similar to Eq50), we repeat the same theoretical predictions of the second virial coefficiefits.,
procedure forz{")(r) and obtain anothe(w). By adding Br=34.43, 27.69, 22.10, and 17.42 ¥mol for T

: (53

these two, we obtain the final value afw). =298.15, 323.15, 348.15, and 373.15 K, respectivalyree
_ ) well with measurementgi.e., B;=40+£6, 28+5, 20+4,
H. Interaction potential 15.5+3 cn/mol, accordingly.”

Before presenting numerical results for the millimeter
Wave_continuum, we discuss briefly the interaction model nyumerical results
used in the calculations. As mentioned previously, in order to
facilitate the calculations, we assume that the interaction po- In our calculations, we first select 80 values of separa-
tential contains cyclic coordinates. Because in the preseriton to cover the whole range of the interaction and roughly
Study the Optimization of potentia] models and their param_CaICUIate the Corresponding values of the matrix elements.
eters is not our main concern, we simply adopt the model foPased on these results, we derive the poles of the continued
the |—EO_N2 pair used in our previous WOﬁ(\NhK:h contains fractions and find those Separations within 3.0-5.7 A that
rotational symmetry about thg axis of H,O. The aniso- Pertain to the poles located in the millimeter wave spectral
tropic partV.(r,Q,,€Q,) consists of a long-range dipole— region. We then reselect another 80 points within a narrower

quadrupole interaction, given by interval. Again, by using more random evaluations in the
Monte Carlo method, we derive the corresponding 80 values

Vo1, Qq, Q) = ﬂ[cosﬂa(s cof 6,— 1) for gach of the matrix elements. This is the most time con-
2 suming part of the calculation in the present study. In order

to improve the accuracy of the later calculations, more dense
distributions ofz{")(r) andz{(r) within the narrower in-
(5D terval of separation are preferable. This can be easily

where® is the quadrupole moment of,Nand a short-range achieved by extending the total points of the matrix elements

—2 sinB,sin B, cosby, cos a,— ¢p) 1,

repulsive interaction represented by a site—site mdel, from 80 to 200 using an interpolation method. Then, for later
convenience to compare with the MPM89 and MPM93 mod-
Vsr(f,ﬂa,ﬂb)IVoz E e i P, (52) els, we use a formula derived from EO) to calculate
icaich contributions to the absorption coefficiertis dB/km) at the

whereV, andp, are two parameters. The dipole moment of frequencyf =2{7)(r) X 29.979(in GH2) from all 2;"(r),
H,O and the quadrupole moment of, ldre well known and a(f,T)=2.026x 10—5’>szopN2,93f,u2r3|\/|+

the values used in the present calculations a+€l.8546 D

and ®=1.466 D A, respectivel}>!® In the site—site model, Z7(r)

the indicesi andj run over force centers of the absorltzer XRYV() Ty e Vel Dpan(r), (54

| . | 12, 0)

(i.e., H,0) and the perturbds (i.e., N), respectively, and;; _ .

is the distance between the centeand the centej. The = Wherepy,o andpy, are pressures of # and N given in
force centers of Nare located on the two N atoms, whose kPa, respectively, and=300/T. In the above expressiop,
separation is 1.10 A, and the force centers ¢DHire located andr are in atomic units, and all remaining factors including
on itsZ axis; their distances to the center of mass are equal tM, , R{")(r), and z{")(r)/|rz{(*)(r)| are dimensionless.
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FIG. 6. The calculated $#0—N, millimeter wave continuun{in units of FIG. 7. The same as Fig. 6, except b330 K.

dB/km kPa?) for T=296 K are represented by the solid line. The corre-
sponding values derived from the MPM89 and MPM93 models are repre-

sented by the dotted and dashed lines, respectively. The values deduced . . . .
from the Baueret al. measurements at 153.000, 213.525, 239.370, and€Spectively. As shown in these figures, the theoretical pre-

350.300 GHz are represented byra dictions are smooth functions of the frequency and they in-
crease almost quadratically as the frequency increases. In
comparison with the MPM89 and MPM93 models, our val-

o _ ) ues lie between them. In addition, except fdr
The formula used to calculate contributions fraﬁn)(r) is P

similar to Eq.(54), except for the replacement bf , by M _
and the replacement of the superscfip) by (—).

There are several empirical models in current use fo
predicting the millimeter wave continuum of water vapor
resulting from the buffer gas N°!%*8 Unfortunately, these
empirical models differ significantly from each other. There
are also a number of laboratory measurements carried out
millimeter windows!®~2* but values of the foreign con-
tinuum deduced from measurements contain uncertaintiex
because one has to subtract local line absorptions and tlé
self-continuum from the raw data, and this procedure intro-S
duces errors. As a first attempt to explain the millimeterz
wave foreign continuum from first principles, it is not our g
intention here to make comprehensive comparisons with a i
models. Instead, we choose the MPM89 and MPM93 model 2
as examples because they are well-known and widely useg ,4-3|
ones. With respect to measurements, we will compare oL %
results with values deduced from the Bas¢ral. datd® 2% &
because the measurements were performed more recen
and under more diverse conditions. We plot the calculate:
absorption coefficients of }#0—N, below 450 GHz forT
=296, 330, and 270 K in Figs. 6, 7, and 8, respectively,
together with values derived from the MPM89 and MPM93 44—+ A TR TN S R TR T T
models. In Figs. 6 and 7, we also plot values obtained by 0 50 100 150 200 250 300 350 400 450 500
subtracting local Van Vleck—Weisskopf line contributions up FREQUENCY (GHz)
to 1000 GHz from the Baueetal. measurements of rig g The same as Fig. 6, except =270 K; no experimental data is
H,O-N, at 153.000, 213.525, 239.370, and 350.300 GHzavailable.

107!

_2)

Pa

1072
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-14.2 T T T T
271 K 300 K 332 K 366 K
-14.4 |
HO = N FIG. 9. A log—log plot of the calculated mil
—148 © 350.300 GHz limeter wavéJ cogtirr)luum divided b e
a A 239.370 GHz y the square of the
N o_148 | o 213.525 GHz frequency (in units of dB/kmkPa?GHz ?) at f
§ + 153.000 GHz =153.000, 213.525, 239.370, and 350.300 GHz, re-
{;\ —-15 | g spectively, as a function of the temperature. The theo-
o retical values obtained at these frequencies are repre-
x —15.2 - 1 sented by the solid lines with different symbots [,
E A, andO marked at their ends, respectively. Those ob-
o —154 1 tained from the MPM93 model are represented by the
= four dotted lines with similar end marks. Because the
o =156 - T continuum of the MPM89 model is proportional to the
} 158 square of the frequency, the corresponding values are
VT T presented by one dashed line. The values deduced from
16 L i the Baueret al. measurements at these frequencies are
plotted with the symbols-, 0, A, andO, respectively;
—162 F i for clarity, the same symbol is linked by the dot—dashed
line.
-16.4 L L . L
-0.1 0 0.1 0.2
In(T/300)

=153.000 GHz, our values agree well with those from thesents the present calculated continuum only. We think that
Baueret al. measurements. In order to show the temperaturéurther measurements will allow us to refine the theoretical
dependence more clearly for the four specified frequenciekesults.

f=153.000, 213.525, 239.370, and 350.300 GHz, respec-

tively, we calculatea(f,T) for T=260, 270,...,290, 296,

300.,...,370 K and plot(f,T)/f? in Fig. 9. As shown in the Ill. DISCUSSIONS AND CONCLUSIONS
figure, they are four straight lines; the first three are almost Before we go further, we have to first answer a question:
identical and the fourth is parallel with a little separation.what are our calculated values from the Lanczos algorithm?
This implies that the temperature dependence(df,T) can In Figs. 6—9, we compare our results with the foreign-
be well characterized by", where the index is a constant.  continuum component of the MPM89 and MPM93 models
On the other hand, the frequency dependence is not exactgnd values representing similar contributions from the Bauer
quadratic, but very close. We also plot the correspondingt al. data. This implies tacitly that in the millimeter wave
values obtained from the MPM89 and MPM93 models, andspectral region, our calculated absorptions contain the con-
those deduced from the measurements of Batat. in the  tinuum of H,O resulting from interacting with Nonly, but
same figure. Because the MPM89 model is proportional taot contributions from local kD lines. It is difficult for us to
f2T-3, it is represented by one straight line only. Mean-provide a rigorous verification of this assertion because we
while, each of the MPM93 model and the Bae¢ml.datais  calculate the millimeter wave absorption resulting from the
represented by four lines. As shown in the figure, our resultswhole pure-rotational band of 4@, as shown by the formal-
those of Baueet al, and the MPM93 model exhibit a very ism presented above. But, based on our calculations, there
similar negative temperature dependence, much strongere several arguments to support our conclusion. First of all,
than the MPM89 model. Given the fact that the MPM89 andas shown by our derivation of the absorption with the Lanc-
MPM93 models differ significantly from each other and val- zos algorithm, the effect of the pure-rotational band is repre-
ues deduced from the Bauer al. measurements contain un- sented by contributions from poles. We have shown that if
certainties, we think that the agreement is satisfactory. the H,O molecule is isolated, up to the cutoff of the contin-

It may be helpful for others if we provide a simple ana- ued fractions used here, there are no poles within the milli-
lytic formula to represent the present work. By fitting our meter spectral region. In fact, the nearest “pseudoline” for
results calculated for a dozen different temperatures raging=296 K is at 46.1918 cm' (=1,385 GH2. This means
from 220 to 330 K, an expression for the continugm  that within our formalism, there are no local lines located in
dB/km), applicable forf up to 450 GHz and foil ranging the millimeter region and no corresponding millimeter wave
from 220 to 330 K, we find absorption from them. As mentioned previously, the latter is

_ - 4.601% 2.0389 not rigorously true, but is acceptable as an approximation. In

a(f,T)=1.9525<10""py,0Pn,(3007T) ¥ ' contrast, the frequency of the nearest “pseudoline,” 1,385
(59 GHz, gives us a hint as to how to choose a cutoff when one

In the above expression, as expected, the frequency depeadds local line contributions. Second, the calculated absorp-
dence ofa(f,T) is very close to, but not exactly quadratic. tions are a smooth function of the frequency and their values
Meanwhile, the temperature index obtained is a constardre proportional to a product of the pressures gDHand
—4.6019 that differs significantly from-3 of the MPM89  N,. Usually the absorptions resulting from local lines have
model. It worth emphasizing that the above formula represharp features. One may argue that the calculated absorptions
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resulting from an average over the whole band could contaimlly, in the far-wing line shape formalism, one introduces the
local line contributions if these lines are smeared completelypand average approximation by assuming that all the lines
and their absorptions are well smoothed in the averaginfave a common shape, which represents an average over the
process. But, no matter how flat a line shape becomes, itsand* This approximation is valid only in cases where in
integration over frequency remains unchanged. Thus, it isomparison with amounts by which the frequency of interest
clear that such smeared absorptions are proportional to thdiffers from strong lines, the latter are not widely distributed
pressure of HO only, independent of the pressure of.N within the band. Because the frequencies of strong lines of
Therefore, we can conclude that the calculated millimetethe pure-rotational band with intensitiesTat 296 K greater
wave absorption from the Lanczos algorithm represents ththan 10 *°cm™/(molecule cm?) range from 36.6 to 374.5
H,O—N, continuum only. In order to obtain the total absorp- cm™?, this assumption is not true here. In addition, results
tions, one has to add the,B—H,O continuum and extra obtained from the far-wing line shape theory could contain
local line absorptions. To obtain the latter is beyond thelocal structures resulting from nearby local lines in the mil-
scope of the current formalism, but it can be easily calculatetimeter spectral region, but the Lanczos formalism yields a
using a Van Vleck—Weisskopf line shape, as in the MPM89completely smooth continuum that is more suitable for com-
and MPM93 models. We note that in these two models, therparison with empirical models.

are 30 and 34 local lines included in the calculations, respec- In the present study, we faced difficulties to evaluate
tively, resulting from a choice of 1000 GHz cutoff. It is in- matrix elements of operators such é§/3§£1 because the
teresting to note that 1000 GHz is close to the nearestorresponding weighting functions oscillated wildly. It is
“pseudoline” frequency 1385 GHz derived here far  well known that the typical representation of a Dirac delta
=296 K. This provides, more or less, a justification for im- function 8(x) looks like a very sharp peak locatedat 0
posing the 1000 GHz cutoff in MPM89 and MPM93 models. and the integration ovesremains 1. However, it could have
One could extend the 1000 GHz cutoff if one adds the locaknother representation that oscillates rapidly along<thgis

line absorptions into the theoreticab®-N, continuum. but keeps its integration overunchanged. In fact, Eq41)

As mentioned above, our knowledge of the experimentals an example and it has been used in evaluating a part of
millimeter wave foreign continuum is still somewhat uncer- , (1|£,£,£,|1), analytically. Other distribution functions
tain. From the theoretical point of view, there are still debatesntroduced in the present study look, more or less, like a
going on about which mechanisms are responsible for thi®irac delta function, but they are not. Some of them contain
absorption. Besides the far-wing theory, CIA is a proposedharp peaks and others oscillate rapidly. The Monte Carlo
candidate responsible for absorptions associated with the binethod works well when weighting functions have sharp
nary collisions? Although one cannot rule out the possible peaks, but it fails to yield reliable results with rapidly oscil-
significance of CIA, there are no quantitative CIA calcula-lating weighting functions. At present, we don not know how
tions so far. On the other hand, as shown by derivationso deal with this case and we had to estimate their values. Of
given here in detail, we start from a sound physical basis andourse, a better treatment is desirable.
use the well-known Lanczos algorithm and the Monte Carlo  We would like to make some comments about other pos-
method to perform numerical calculations. All assumptionssible improvements of the present work. In order to reduce
and approximations involved have been carefully justifiedthe CPU time, we have assumed that the interaction potential
Except for the interaction potential, there are no adjustableontains cyclic coordinates. There are no fundamental prob-
parameters. In addition, the same potential has been check&tins to remove this restriction. In comparison with the
by comparing its predictions of the second virial coefficientspresent case, one of the main differences is that the distribu-
at several temperatures with corresponding measuremention functions associated with JJ® become three-
Given the fact that we are able to predict the magnitudes oflimensional ones and the numbers of coefficients required to
the continuum and its negative temperature dependence, vevaluate them increases dramaticallffor example, for
conclude that one is able to explain this continuum withoutJ,,,=26 it goes from 53 to 26 235. Another is that one has to
relying on appreciable CIA. carry out nine-dimensional integrations in calculating the

Concerning the far-wing line shape theory, we cannotmatrix elements. All these are still manageable, but may re-
directly say that the calculated results are from the far-wingjuire several days on a dozen CPUs. However, we do not
contributions of individual lines because there are no lineexpect that results derived from more general interaction po-
shapes involved in the present calculations. But, we can sagntials would differ dramatically from those presented here.
that the present results are due to permanent dipole trandecause the leading long-range dipole—quadrupole interac-
tions of H,O occurring in the presence of,Nmolecules. tion is dominant and has been taken into account, differences
Therefore, both the effect of the whole band and the far-wingbetween more general potentials and the one used here could
contributions from individual lines belong to the same physi-be large only at short separations. But, these parts of poten-
cal mechanism. From the technical point view, of coursetials do not play an important role in the millimeter wave
these two are not the same. They use different methods twontinuum absorption. An improvement could be made by
account for contributions to the absorption from the permaincluding the higher-order long-range term, i.e., the
nent dipole transitions and pertain to different limitations.quadrupole—quadrupole interaction of®+N, in the calcu-

We think that in the millimeter spectral region, the presentlations. Unfortunately, the latter does not contains cyclic co-
formalism is better than the far-wing line shape formalismordinates, and it becomes necessary to perform the compre-
because the latter’s applicability becomes questionable. Usirensive calculations. In this case, we would prefer to choose
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coordinate representation this does not introduce extra diffiiscussions.
culty. Concerning the cutoff of the continued fraction, of
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